Immediately after switching the page, it will work with CSR.
Please reload your browser to see how it works.

Source:https://github.com/SoraKumo001/next-streaming

⬅️ The Analog Thing: Analog Computing for the Future
Ductapemaster 5 daysReload
In my upper-division analog electronics class (the hard one), our lab project throughout the quarter was to build an analog computer that simulated the physics of a bouncing ball. Physical variables of the system were adjustable (gravity constant, coefficient of restitution, etc), and the ball was "released" by pressing a button. The output was viewed on an oscilloscope.

One of the hardest 10 weeks of my life, but also one of the most rewarding. Our team was one of the few that actually got it working in the end. I had to custom-make a gigantic breadboard to hold the entire circuit.

Today I still work in hardware, but mostly with digital circuits. While my analog knowledge has decayed over the last decade, that project and it's success gives me great confidence any time I have to deal with the domain.

If you want to take a look, here's a pretty similar project: https://www.analogmuseum.org/english/examples/bouncing_ball_...


szvsw 5 daysReload
There’s no better introduction to signals and systems than a modular synthesizer IMO - the combination of tactility and audibility for multi-sensory learning is so great at building intuition - and more importantly, excitement! - for signal processing.

This looks like a cool project in the same spirit!


fidotron 5 daysReload
As a different sort of analog computer, I have long been wondering about a “compiler” for fluidic logic that can output devices you could 3D print which would then operate on pneumatic or hydraulic signals. Probably entirely useless, but wouldn’t be affected by an EMP!

That idea was shamelessly inspired by the soft fluidic robot some years back.


Animats 5 daysReload
A built-in scope display would be nice. Like this $10 module.[1] Then you could use this standalone. They charge EUR 499 for the thing, after all.

The way you usually run an analog computer is to put it into fast repeat mode (which they call REPF), where it cycles between initial condition mode and run mode. Outputs go to a scope. Then you can twiddle the knobs and see the output respond immediately.

The other modes are used mostly during setup and debug.

Hours of fun. Ages 14 and up.

[1] https://www.alibaba.com/product-detail/YIXINTAI-DSO138-Digit...