Immediately after switching the page, it will work with CSR.
Please reload your browser to see how it works.
Rclone, on the contrary, has no layer that would guarantee consistency among parallel clients.
[0] https://docs.regattastorage.com/details/architecture#overvie...
1. If I had a local disk which was 10 GB, what happens when I try to contend with data in the 50 GB range (as in, more that could be cached locally?) Would I immediately see degradation, or thrashing, at the 10 GB mark?
2. Does this only work in practice on AWS instances? As in, I could run it on a different cloud, but in practice we only really get fast speeds due to running everything within AWS?
3. I've always had trouble with FUSE in different kinds of docker environments. And it looks like you're using both FUSE and NFS mounts. How does all of that work?
4. Is the idea that I could literally run Clickhouse or Postgres with a regatta volume as the backing store?
5. I have to ask - how do you think about open source here?
6. Can I mount on multiple servers? What are the limits there? (ie, a lambda function.)
I haven't played with the so maybe doing so would help answer questions. But I'm really excited about this! I have tried using EFS for small projects in the past but - and maybe I was holding it wrong - I could not for the life of me figure out what I needed to get faster bandwidth, probably because I didn't know how to turn the knobs correctly.
Why local storage? We’re going to have multiple processes reading & writing to the files and need locking & shared memory semantics you can’t get w/ NFS. I could implement pin/unpin myself in user space by copying stuff between /mnt/magic-nfs and /mnt/instance-nvme but at that point I’d just use S3 myself.
Any thoughts about providing a custom file system or how to assemble this out of parts on top of the NFS mount?
I see you've made some similar decisions to what we did for similar reasons I think - making sure files are stored 1:1 exactly as an object without some proprietary backend scrambling, offering strong consistency and POSIX semantics on the file storage, with eventual consistency between S3 and POSIX interfaces, and targeting high performance. Looks like we differ on the managed service vs traditional download and install model, and the client-first vs server-first approach (though some of our users also run cunoFS on an NFS/SMB gateway server), and caching is a paid feature for us versus an included feature for yours.
Look forward to meeting and seeing you at storage conferences!
Service Tier: Zonal
Location: us-central1
10 TiB instance at $0.35/TiB/hr
Monthly cost: $2,560.00
Performance Estimate:
Read IOPS: 92,000
Write IOPS: 26,000
Read Throughput: 2,600 MiB/s
Write Throughput: 880 MiB/s
0 - https://www.definite.app/blog/duckdb-datawarehouse