Immediately after switching the page, it will work with CSR.
Please reload your browser to see how it works.
Now that I have done more than enough CPU design inside FPGAs, I wanted to try something new, some computation heavy things that could benefit from an FPGA. Does anyone here know how feasable it'd be to implement something like that on an FPGA? I only have rather small chips (artix-7 35T and polarfire SoC with 95k logic slices). So I know I won't be able to press a full LLM into that, but something should be possible.
Maybe I should refresh the fundamentals though and start with MNIST. But the question is rather: What is a realistic goal that I could possibly reach with these small FPGAs? Performance might be secondary, I am rather interested in what's possible regarding complexity/features on a small device.
Also has anyone here compiled openCL (or GL?) kernels for FPGAs and can give me a starting point? I was wondering if it's possible to have a working backend for something like tinygrad[1]. I think this would be a good way to learn all the different layers on how such frameworks actually work
Anyway, I wonder if there is some HW support in modern CPUs/GPUs for linear algebra (like matrix multiplication) over Z_2^n ? I think it would be useful for SAT solving.